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In this paper we present a closed analytical description for few-cycle, focused electromagnetic pulses of
arbitrary duration and carrier-envelope phase. Because of the vectorial character of light, not all thinkable
one-dimensional shapes for the transverse electric field or vector potential can be realized as finite energy
three-dimensional �3D� structures. We cope with this problem by using a second potential, which is defined as
a primitive to the vector potential. This allows one to construct fully consistent 3D wave-packet solutions for
the Maxwell equations, given a solution of the scalar wave equation. The wave equation is solved for ul-
trashort, Gaussian, and related pulses in paraxial approximation. The solution is given in a closed and numeri-
cally convenient form, based on the complex error function. All results undergo thorough numerical testing,
validating their correctness and accuracy. A reliable and accurate representation of few-cycle pulses is, e.g.,
crucial for analytical and numerical theory of vacuum particle acceleration.
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I. INTRODUCTION

Recent developments in laser technology �1� resulted in
ultrashort electromagnetic pulses, which may contain only a
few optical cycles and can be focused down to a single
wavelength leading to the so-called �3 regime. In addition,
there was tremendous experimental progress in carrier-
envelope-phase �CEP� control of these ultrashort laser pulses
allowing one to synthesize almost arbitrary pulse shapes
�2–4�. Applications for these well controlled laser pulses
range from coherent attosecond control �5� to high-gradient
electron acceleration �6–9� and generation of ultrashort co-
herent x-ray flashes �10–13�. At the same time, numerical
studies demonstrate the importance of a correct analytical
description of laser pulses in vacuum �6,7�. It was shown,
that even weakly inaccurate solutions of Maxwell equations
can lead to largely erroneous results when applied blindly to,
e.g., direct particle acceleration by the laser fields. Clearly,
there is a demand for an accurate analytical description of
these pulses.

As in the case of strongly focused pulses �14,15�, the
vectorial character of light becomes crucial for few-cycle
pulses. There is a significant interdependence between the
pulse shape and the polarization that requires careful analy-
sis. We demonstrate that not all field structures conceivable
in one-dimensional �1D� models can be realized as finite en-
ergy, localized three-dimensional �3D� wave packets. Com-
monly used approximations are consistent for a certain
choice of the CEP only. When trying to construct laser pulses
starting from a given shape for the transverse field compo-
nent, one easily ends up with a pulse inconsistent in the 3D
geometry. Our method to construct consistent 3D electro-
magnetic structures is valid for arbitrary CEP cases.

Following the work of Porras �16,17�, our approach to the
wave equation uses the analytic signal �18�. We also consider
the particularly interesting case of a radially polarized laser
pulse �19,20�. Because of its strong and purely longitudinal
field component on axis, the radially polarized pulse may
become an important tool for electron acceleration �7–9�. We
provide the proper analytical solutions in a simple manner,

which is particularly convenient for use in numerical simu-
lations.

Finally, we let the solutions undergo some accurate nu-
merical tests. Any significant errors in the solution would
show up while they are propagated by the field solver. Com-
pared to more conventional approximations, the new pulse
description decreases electromagnetic artifacts drastically at
the pulse initialization stage, and the self-consistent develop-
ment of the pulse fields agrees with the analytical description
in cases, where more conventional approximations fail.

II. SECOND POTENTIAL REPRESENTATION

An electromagnetic pulse can be represented by its four
potential A�= �� ,A�, where each component satisfies the
vacuum wave equation �A�=0. We use the Lorenz gauge
��A�=0 and further set the scalar potential to zero, �=0,
which can be done in vacuum. Then, the fields are written as
E=−c−1�tA and B=��A. We are interested in finite energy
pulselike structures, so that A is required to be a localized
function: �A�→0 for r→�. It is easy to see that the pulse
potential is uniquely defined now, since each change of A
generates measurable electric or magnetic fields. Because of
�=0, the Lorenz gauge coincides with the Coulomb gauge in
vacuum � ·A=0.

In laser physics, it is common to choose an analytical
solution to the wave equation for the main, i.e., transverse
components of the pulse. Then the longitudinal component
can be determined: Az=�z

��� ·A�dz. However, this integral
can yield a nonvanishing longitudinal potential component
far from the actual pulse region, since commonly used solu-
tions to the wave equation do not satisfy the condition

�
−�

�

�� · A�dz=
!

0 �1�

for ultrashort pulses. Note that this component is not mean-
ingless but will cause nonzero longitudinal electric and trans-
verse magnetic fields, an example of which is shown in Fig.
1�b�. These fields have a small amplitude of the order
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O(�c /���2), but since they extend infinitely along the beam
axis, they contain an infinite amount of energy.

To get a realistic finite energy pulse, our choice of the
transverse vector potential is restricted by Eq. �1�. This is a
fundamental difference to the 1D case, where such a restric-
tion on the wave form does not exist. Before the conse-
quences of this restriction are discussed in detail, let us in-
troduce the second potential �, which enables us to describe
a reasonable set of realistic pulse structures in a more con-
venient way.

A = � � � . �2�

Of course, each component of � has to satisfy the wave
equation 	
i−

1
c2�t

2
i=0. Then, the wave equation for A and
the Coulomb gauge readily follow from Eq. �2� and there are
no restrictions like Eq. �1� on the choice of the second po-
tential components.

For a large class of laser pulses, it is convenient to choose
êz ·�=0. Then Eq. �2� becomes Az=−�� · �êz��� and A�

= êz��z�. In the near-monochromatic case �z�−i� /c we
get êz��	 icA� /�, hence in the long pulse limit the trans-
verse second potential �TSP� êz�� is, except for a constant
factor, identical with the transverse components of the vector
potential.

Let us point out that each electromagnetic pulse in
vacuum can be represented by the TSP. This is easily seen,
since the second potential can be obtained by taking the in-
tegral êz��=�z

�A�dz� from an arbitrary vector potential in
Coulomb gauge. To make the representation unique, we re-
quire the condition ���→0 for �r�→� in the half-space x
�0, so that �� is unambiguously given by the just men-
tioned integral. Then, for a vast class of laser pulses includ-
ing all linearly, circularly, and radially polarized modes, �
will vanish at infinity in all directions. To understand this, we
write the integral condition �1� in terms of the TSP as fol-
lows:

�� · �êz � �
�z=−�� = 0. �3�

In general, it possesses nontrivial solutions, corresponding to
structures, where the fields produced by � at z→−� vanish,
but � itself does not. However, we look at important special
cases. For linear polarization �
x=0�, Eq. �3� has obviously
none but the trivial solution. Thus, all finite energy, linearly
polarized pulses can be represented by a localized TSP. The

same is true for circular polarization, which we define by

y = i
x, and the components are assumed to be analytical
functions. Equation �3� then only has solutions of the type

�x+ iy�, so there is no nontrivial solution that fulfills the
boundary condition. Another interesting structure is the radi-
ally polarized pulse �êz��= f�r� ,z , t�r��, and again there
is no nontrivial finite energy solution to Eq. �3� obeying its
symmetry.

Summarizing, for each realistic linearly, circularly, or ra-
dially polarized pulse, the condition

�êz � ��z=−� = �−�
� A�dz=

!

0

on the transverse vector potential must be fulfilled. Com-
monly used analytical wave-packet solutions strictly fulfill
this condition only for a certain choice of the CEP. Take, for
instance, a pulse with a Gaussian longitudinal profile, Ay�x
=0,y=0,z , t=0�=a0 exp�−�z /c��2�cos�2z /��, then �
y�z
=−��� / �a0��=−1/2�̄ exp�−�̄2��0, meaning that some field
components would extend to infinity as in Fig. 1�b�. Unlike
the cosine-phased Gaussian, the sine-phased potential may,
in principle, be assigned to Ay, as the integral vanishes here
�see also Fig. 1�a��. Assigning an exact Gaussian profile to
the transverse electric field instead does not help. Indeed, by
calculating the second potential of such a pulse it can be
proven that this structure does not exist for any phase.

Other than for linearly, circularly, or radially polarized
pulses, for the azimuthally polarized pulse êz��
= f�r� ,z , t�ê� the TSP representation does not have to vanish
as z→−�. Notice that this pulse does not produce any lon-
gitudinal field at all. Anyway, it can neatly be represented by
the longitudinal component êz ·� instead of the transverse
components of the second potential.

III. SCALAR WAVE EQUATION

Now we come to the solution of the scalar wave equation
on �. The Fourier transform in time and the transverse di-

rections yield �z
2
̃=−��� /c�2−k�

2 �
̃, with the solution


̃�x,k�,�� = �
̃�z=0 exp
− iz�
�

c
�2

− k�
2 � . �4�

Next, the focal spot profile 
̃�z=0� has to be chosen in a
physically reasonable way. Besides the very common lin-
early polarized Gaussian mode TEM00, we also treat the very
interesting radially polarized Hermite-Gaussian mode TM01.
Further we will tackle the 2D solutions, which differ in some
factors from the 3D ones. Knowing the scalar solution for the
TEM00 mode, we can easily construct circularly polarized
Gaussian pulses by setting 
y = i
x, and moreover, azimuth-
ally polarized pulses by assigning the same term to the lon-
gitudinal component êz ·� of the second potential.

Let ��t� be the pulse time dependence at the center of the

focal spot and �̃��� its Fourier transform. The focal spot size
may depend on the frequency as follows:

�êz � ��̃�z=0� = �̃���exp− 
 r�

����
�2��r�, TM01

êx, TEM00.
�

�5�
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FIG. 1. �Color online� Logarithm of the square transverse mag-
netic field log10(�By /B0�2) in the y=0 plane resulting from an ul-
trashort, linearly polarized, �a� sine- and �b� cosine-phased Gaussian
potential. The pulse duration is c�=0.5� and focal spot width �
=2�.
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Now, the transverse direction Fourier transform of Eq. �5�
is inserted into the solution of the wave equation �4�. Since
we consider pulses propagating mainly in one direction
�c2k�

2 ��2�, we expand the square root in a Taylor series and
neglect fourth-order terms: ��� /c�2−k�

2 	� /c−ck�
2 / �2��,

performing the paraxial approximation. If now ��1 /�� is
assumed, so that the Rayleigh length zRl=��2 /2c is constant
for all frequencies, we are able to carry out the inverse Fou-
rier transform analytically and obtain the solution

êz � ��r,t� = 
 zRl

q
�g

�
t −
z

c
−

r�
2

2cq
��r�, TM01

êx, TEM00.
�

�6�

Here g=1 for a linear �g=0.5 in 2D� and g=2 for
a RP �g=1.5 in 2D� laser and q=z+ izRl is the confocal pa-
rameter. � is a complex representation of the time depen-
dence of the pulse. Note, that since t�= t−z /c−r�

2 /2cq,
it is generally a complex number. Choosing naively
��t��=exp�−t�2 /�2+ i��0t�+��� yields a solution diverging
for big r� as O(exp�r�

4 �). Instead the analytic signal �18�
should be used, as suggested by Porras �16�. The analytic
signal is the complex representation of a real signal without
negative frequency components. The analytic signal repre-
sentation of the Gaussian pulse g�t��
=exp�−t�2 /�2�cos��0t+�� is calculated to be

��t�� = �0
e−�̄2

2
ei�w
 t�

�
− i�̄� + e−i�w
 t�

�
+ i�̄�� , �7�

wherein �̄=�0t /2 and w�z�=exp�−z2�erfc�−iz� is the com-
plex error �or Faddeeva� function �21�. The analytic signal of
the Gaussian pulse was also calculated in �16�, but Eq. �27�
from �16� disagrees with Eq. �7� for Im�t���0. Analytical
and numerical tests show that Eq. �7� is the correct solution.
To illustrate the meaning of Eq. �7� and its difference to the
naive choice ��t��=exp�−t�2 /�2+ i��0t�+���, consider Fig.
2. In the region near the optical axis, Im�t�� is small and the
solutions agree quite well. However, for bigger r� the naive
solution �b� diverges, while the analytic signal shows a
proper beamlike behavior and vanishes.

IV. NUMERICAL TESTING

Equations �2�, �6�, and �7� together form the key to accu-
rate analytical and numerical representation of ultrashort
few- and even single-cycle electromagnetic pulses. One im-
portant application of them is the use in numerical simula-
tions and we will conclude this paper by showing their su-
periority to more conventional representations for this
application, thereby checking the correctness and the accu-
racy of the analytical results obtained so far.

We use the particle in cell �PIC� code VLPL �22�. To
begin with, the fields are initialized inside the VLPL simula-
tion grid. Then they are propagated using a standard algo-
rithm on the Yee mesh. Finally, it is verified if the numeri-
cally propagated pulse still agrees with the analytical term,
overall or in some key parameters, and furthermore, if un-
physical static fields remain at the place where the pulse was
initialized.

First we check the correctness of Eqs. �6� and �7�, proving
their superiority to a conventional representation often used
for numerical simulations. The “conventional,” or separable
form is a simple product of a monochromatic, transversely
Gaussian beam with a Gaussian temporal profile. Circularly
polarized pulses are used, so that the shape can well be seen
in the intensity plots, with a duration of c�=� and a focal
spot width of �=2�. The pulses are focused over a distance
of 50� inside the simulation. In Fig. 3 the initial condition
and the numerically propagated solution at the focal spot are
shown. While the product approximation shows strong asym-
metric deformation in the focus and the focal field does not
reach its analytically specified intensity I0, the proper short
pulse solution is nearly perfectly symmetric in the focus and
reaches the desired maximum. The presented solution Eqs.
�6� and �7� is clearly superior to the simple product approach.

Depending on the required accuracy, our approach can be
used down to focal spot sizes of �	�. Below that, the
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FIG. 2. �Color online� Direct comparison of a two-dimensional
cut through the complete short-pulse solution �6� using �a� the “na-
ive” choice ��t��=exp�−t�2 /�2+ i��0t�+��� and �b� the analytic
signal Eq. �7�. Pulse parameters are c�=0.5�, �=2�, and ct
=−10� �before focus�.
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FIG. 3. �Color online� Focusing properties of different approxi-
mations of the wave equation, evaluated in a 2D version of the PIC
code VLPL. �a� and �b� show the intensity distribution as it is ini-
tialized inside the code and �c� and �d� show the propagated solu-
tion at the focal spot. �a� and �c� use the CW paraxial solution
multiplied with a temporal profile, and �b� and �d� the correct short
pulse solution. The circularly polarized laser pulses are Gaussian
both in space and time with duration c�=� and width �=2�.
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paraxial approximation fails. However, focusing a �3 pulse
��=c�=�� over a distance of 50� with the PIC electromag-
netic solver yields a focal intensity of 82% �or 90%, when
also using the TSP representation� of the analytically speci-
fied value, still with a perfectly symmetrical spot shape. For
comparison: Using the product approach in the same kind of
simulation, the numerical intensity reaches only 42% of the
specified value.

Now we come to the second potential representation. The
alternative to its use is to assign arbitrary wave equation
solutions to the transverse components of the vector potential
and then make some kind of approximation for the longitu-
dinal part. The simplest possibility is to fully neglect the
longitudinal field component, but for strongly focused pulses
a somewhat more reasonable approximation can be reached
by choosing Az= �c / i�0��� ·A�, what we will call the quasi-
monochromatic approximation, because it relies on �z
�−i�0 /c. Using one of these approximations, the initial
pulse structure has finite energy, and because of the energy-
conserving property of the field propagator algorithm, the
pulse will be forced to self-organize into a consistent struc-
ture of finite extension. While this happens, “virtual charges”
are left behind, unphysical static fields, which may make
the concerned regions in the simulation domain unusable for
further computations. The virtual charge distribution can
be estimated analytically in the case of a linearly polarized
Gaussian laser pulse. To do this, we calculate the diver-
gence of the vector potential in the quasi-monochromatic
approximation. We base our estimate on Ax
	A0 exp�−i�0z− �z /c��2− �r� /��2� and apply Az
= �c / i�0��xAx. The virtual charge distribution is then calcu-
lated to be �virt= �4�−1�t�� ·A�	zxAx / �c�2�2�. It is seen,
that these unphysical charges increase for very short, focused
laser pulses. We want to see if the problem can be cured by
the use of the TSP representation.

When employing the second potential representation for
an ultrashort pulse, the additional derivative will slightly al-
ter the pulse shape. As shown before, this is inevitable, since
a Gaussian-shaped linearly polarized vector potential can ex-
ist as an independent structure in vacuum only if it is sine
phased. To make the TSP represented pulse comparable to
the conventional one, it is necessary to take care of the fre-
quency shift caused by the z derivative, which can be esti-
mated as �eff=�0+�2 /�.

Figure 4 shows the pulses after a short propagation dis-
tance in the PIC simulation box. Firstly one observes that,
despite the very short duration, the moving pulse structures
�right half of the images� appear very similar in the conven-
tional and the TSP version. Secondly, one notices that the
conventional pulse leaves behind a significant amount of vir-
tual charge fields in the initialization region �left half of the
images�, having both a longitudinal and a transverse compo-
nent. This undesired phenomenon can neatly be suppressed
by the use of the second potential, seen in the figure.

The last test we want to present in this paper concerns the
longitudinal field component on the optical axis of a radially
polarized pulse, which is of particular interest for vacuum
electron acceleration �7–9�. The pulse length used was c�
=0.5�, and the focal spot size �=2�. Again, the conven-
tional approach corresponds to a near-monochromatic ap-

proximation Ax= i�� ·A� /�, so as to generate a finite pulse
structure from the given transverse field components. The
phase � in Eq. �7� was chosen as �=0 for the second poten-
tial representation and as �=0.5  for the conventional rep-
resentation, so that the pulses are actually comparable. Ini-
tially, the longitudinal field nearly agrees for both
representations, since the first term of Eq. �7�, which is the
dominating one, is the same in both cases.

In Fig. 5 we present the longitudinal field of the pulse
after it has left its “virtual charges” behind. The fields initial-
ized using the conventional representation already differ sig-
nificantly from the analytical description, whereas the TSP
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represented fields agree almost perfectly. This will be crucial,
e.g., when PIC simulations are to be compared with other
analytical or seminumerical calculations, where the field is
inserted analytically and is not self-consistently propagated.
Without an exact and reliable pulse representation, such a
comparison is hardly possible.

V. CONCLUSION

In this paper we have given a comprehensive guide to the
mathematical representation of ultrashort, Gaussian and re-
lated electromagnetic pulses. The wave equation for an ul-
trashort Gaussian pulse has been solved in paraxial approxi-

mation. Further, it has been shown that the vectorial
character of light has a stringent influence on its field struc-
ture for ultrashort pulses. To pay regard to this, ultrashort
pulses should be represented by their second potential, using
the transverse components for linear, circular, or radial po-
larization and the longitudinal component for azimuthal po-
larization. Numerical tests prove that the solutions flawlessly
work in the regime of ultrashort, moderately strong �����
focused pulses.
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